1348

Életrevaló matematika

Előadás a FILO-Pontban

Január 26-án hétfőn Hogyan utánozza az élet a matematikát? címmel Havasi Ferenc tartott előadást a FILO-Pontban (Győr, Kálóczy tér 15.). A Szegedi Tudományegyetem oktatója azzal kezdte a téma megközelítését, hogy szeretné feltárni a hallgatóság számára a matematika értékeit.

Az első találkozás az általános iskolában történik, ezért óriási a tanárok felelőssége, hogyan mutatják be ezt a tárgyat a gyerekeknek. És meghatározó, hogy milyen választ tudnak adni az ismétlődő kérdésre: miért kell ezt nekem megtanulni? Havasi Ferenc elhivatott és eredményes matematikatanárok gondolatait idézve bontotta ki a hallgatóság előtt, hogy mi is lehet az értelme ennek a nem túl népszerű, ám nagy lehetőségeket magában hordozó tantárgynak. Többek között Dienes Zoltánt hozta példaként, aki nagyon sokat publikált a matematika tanulás lélektanáról, és játékos taneszközöket fejlesztett ki, amelyek ma is megtalálhatóak a jól felszerelt általános iskolákban világszerte. Dienes a motivációk különböző szintjeit határozta meg a tanulásban. Az egyik szint a gazdasági, mely teljesen külső, felszínességhez és egoizmushoz vezet. A második pedig a személyes motiváció, amely mélyen belülről fakad. Ez az ideális szint, amely magában foglalja a felfedezés örömét és az önálló gondolkodást. Ez azért cél Dienes szerint, mert innentől kezdve tud „önfenntartóvá” válni a fejlődési folyamat. Megfogalmazta, hogy a matematika tanításának elsődleges célja a személyiség építése. Ennek egyik legfontosabb lépése, hogy a tanulók képessé váljanak jól kérdezni. Így a problémamegoldó képességük is alakul. Az előadó kiemelte Erdős Pált is, aki a magyar tudományos élet egyik különleges egyénisége volt. Az önálló gondolkodásra nevelés nála is kulcsfontosságú. A tudós két olyan dolgot nevezett meg, melyek a szuverenitást leginkább rombolják: a tekintélyelvűséget és a szolgalelkűséget.

Az előadó szerint mindenképpen érdemes megérteni, hogy mit is jelent a matematikai létezők világa, melyet minden kultúrában más-más néven neveztek, Platón megfogalmazásában ez az Ideák világa. A számok ebben a megközelítésben sokkal több jelentést hordoznak, mint amivel általában találkozik az ember. Püthagorasz úgy említi a számokat, mint önálló létezőket, melyek nem elsősorban mennyiségi, inkább minőségi meghatározást jelentenek. Például a kettes szám, mint a világban sokféle módon megjelenő kettőség, a yin és yang kifejeződése.

A szemléltető gyakorlatokkal színesített programban helyet kapott a zene is, melyen keresztül a hallgatóság nagyon közvetlenül találkozhatott a számok időbeli megnyilvánulásával, a ritmussal. Az Új Akropolisz zenekara különböző számarányokat is megszólaltatott, melyek nyomán hol harmonikus, hol diszharmonikus hangzatok csendültek fel. A fülnek sem a csupa harmonikus, sem a csupa diszharmonikus nem igazán kívánatos. A természetben sem jellemző az egysíkúság, így a zene is akkor válik élettelivé, ha a kettő követi és kiegészíti egymást.

A természet törvényeivel összevetve új megvilágításba került az exponenciális függvény is, mely ma elsősorban a gazdasági fejlődéshez kapcsolódik, mint a kívánatos folyamat leképezése. Ez a természetben normális esetben nem fordul elő, helyette a ciklusok törvénye ural mindent. Csak a robbanás esetében lehet vele találkozni, amely nagyot szól, és aztán összeomlás követi.

A sok szempontból elgondolkodtató előadás végén Havasi Ferenc visszakanyarodott a címadó gondolathoz, és azt a filozófiát érintő kérdést tette fel, hogy vajon az élet utánozza a matematikát vagy fordítva. Ebben a tekintetben különbség van a mai nyugati és a keleti, valamint a hagyományos világkép között. Mert arra a kérdésre, hogy létezik-e az Ideák világa, mi találjuk-e ki vagy sem, más és más választ adnak. A korábbi kultúrák, sőt a tudatosabb, modern gondolkodók, közöttük Nikola Tesla szerint az ideák világa a valódibb, a másik annak tükröződése. Plótinosz, neoplatonikus filozófus szerint az ember életének célja az, hogy megtanulja látni az ideákat, és ez adhatja meg számára a legnagyobb boldogságot.

A hallgatóság kérdéseiből az derült ki, hogy sikerült felkelteni az érdeklődést, és megváltoztatni a matematikáról eddig kialakult képet. Havasi Ferenc segítségével egy sokkal életközelibb és életrevalóbb tudományt lehetett megismerni, mely új nézőpontból világíthatja meg a mindennapokban felmerülő problémákat.

„Általában több esélye van valaminek a megvalósulásra, ha kimutatható róla, hogy gazdaságilag kifizetődő, mint ha csupán boldoggá teszi az embert. A matematika belső értékét az emberek általában nem becsülik meg eléggé. Ugyan hogy is tudna a matematika tudása valakit másképp boldoggá tenni, mint úgy, hogy több pénzt juttat a pénztárcájába? Pedig (...) a matematikai ismeretszerzésnek éppúgy lehet örömszerző hatása is, mint bármelyik művészeti ág művelésének.” (Dienes Zoltán Pál)

„Bizonyos szempontból a matematika az egyetlen határtalan emberi cselekvés. Elképzelhető, hogy az emberiség előbb vagy utóbb mindent megismer a fizikában vagy a biológiában, a matematika azonban végtelen, ezért kimeríthetetlen.” (Erdős Pál)

„Nincs még egy olyan lenyűgöző és kutatásra érdemes terület, mint a természet tanulmányozása. Az emberi értelem legfőbb célja megérteni ezt a nagyszerű alkotást, felfedezni a benne ható erőket, és az ezeket irányító törvényeket.” (Nikola Tesla

Szabados Éva



2015.01.28